Including Original "Paul H. Letters" Copyright © 1996-2018 Paul V. Heinrich - All rights reserved.

Saturday, 19 November 2011

Holocene Extinctions and a different lake

Holocene Extinctions and a different lake

In “[meteorite-list] Holocene Extinctions and a different 
lake”, Ed wrote:

“I'm glad to hear that all the debate about the dating of 
the Lake Misssoula flooding has now been cleared up. 
Does the same thing hold for Lake Bonneville, and 
other Ice Age plains lakes?”

I have PDF versions of about 70 publications about
geology and paleoliminology, and chronology of Lake 
Bonneville. There are numerous other minor publications
about Lake Bonneville. In addition, I have about a couple 
of dozen papers and other publications about other Ice 
Age pluvial lakes that existed in the Southwestern United
States, including pluvial Lake Estancia in New Mexico.

In none of these papers, is there any evidence of either 
any terminal Pleistocene impacts, including about 
“10,750 BCE,” or any Holocene impacts. The significant
change from Ice Age pluvial lake levels in Lake Bonneville
and other pluvial lakes towards modern playa lakes started 
about 12,600 14C yr BP (15,000 cal yr B.P.). This is long 
before any of your proposed impacts. This is simply the 
time that the colder, wetter climates of the Last Glacial 
Maximum transitioned to the warmer, drier conditions 
of the late Pleistocene and early Holocene. This change 
is coincident with comparable drops (regression) in 
lake-level in Lake Lahontan, Lake Estancia, and other
southwestern pluvial lakes and with the onset of the
Bolling-Allerod warming event. 

There is a very slight rise in lake levels to the Lake Gilbert 
highstand in response to climate changes associated with
the Younger Dryas. There is nothing obvious in the lake
sediments to indicate any direct association with any sort 
of extraterrestrial impact. Whatever caused the Younger 
Dryas climatic changes is what indirectly caused the high 
lake levels of Lake Gilbert.

In terms of basic reading, a person can start with:

Allen, B. D., 2005, Ice Age Lakes in New Mexico. in S. G. 
Lucas, G. S. Morgan, and K. E. Zeigler, eds., pp. 107-114, 
New Mexico’s Ice Ages. Bulletin no. 28, New Mexico 
Museum of Natural History and Science.

Balch, D. P., A. S. Cohen, D. W. Schnurrenberger, B. J. Haskell, 
B. L. V. Garces, J. W. Beck, H. Cheng, and R. L. Edwards, 2005,
Ecosystem and paleohydrological response to Quaternary 
climate change in the Bonneville Basin, Utah. Palaeogeography, 
Palaeoclimatology, Palaeoecology. vol. 221, no. 1-2, pp. 99-122.

Benson, L. V., D. R. Currey, R .I. Dorn, K. R. Lajoie, C. G. Oviatt, 
S. W. Robinson, G. I. Smith, and S. Stine, 1990, Chronology of 
expansion and contraction of four great Basin lake systems 
during the past 35,000 years. Palaeogeography, Palaeoclimatology, 
Palaeoecology. vol. 78, no. 3-4, pp. 241-286.

Benson, L. V., S. P. Lund, J. P. Smoot, D. E. Rhode, R. J. Spencer, 
K. L. Verosub, L. A. Louderback, C. A. Johnson, R. O. Rye, and
R. M. Negrini, 2011, The rise and fall of Lake Bonneville 
between 45 and 10.5 ka. Quaternary International. vol. 235, 
no. 1-2, pp. 57-69.

Louderback, L. A., and D. E. Rhode, 2009, 15,000 Years of 
vegetation change in the Bonneville basin: the Blue Lake 
pollen record. Quaternary Science Reviews. vol. 28, no. 3-4, 
pp. 308-326.

Godsey, H. S., C. G. Oviatt, D. M. Miller, and M. A. Chan, 2011,
Stratigraphy and chronology of offshore to nearshore deposits 
associated with the Provo shoreline, Pleistocene Lake Bonneville, 
Utah. Palaeogeography, Palaeoclimatology, Palaeoecology. 
vol. 310, no. 3-4,pp. 442-450.

Oviatt, C. G., D. M. Miller, J. P. McGeehin, C. Zachary, and S. 
Mahan, 2005, The Younger Dryas phase of Great Salt Lake , 
Utah. Palaeogeography, Palaeoclimatology, Palaeoecology.
vol. 219, no. 3-4, pp. 263-284.

Patrickson, D. S., A. R. Brunelle, and K. A. Moser, 2010, Late 
Pleistocene to early Holocene lake level and paleoclimate 
insights from Stansbury Island, Bonneville basin, Utah.
Quaternary Research. vol. 73, no. 2, pp. 237-246.

Spencer, R. J., M. J. Baedecker, H. P. Eugster, R. M. Forester, 
M. B. Goldhaber, B. F. Jones, K. Kelts, J. Mckenzie, D. B. 
Madsen and S. L. Rettig, 1984, Great Salt Lake, and precursors, 
Utah: The last 30,000 years. Contributions to Mineralogy 
and Petrology. vol. 86, no. 4, pp. 321-334.

Maps of the pluvial lakes of the Southwest US can be found at:

1. Late Quaternary Paleohydrology of the Mojave Desert

2. Reheis, M,, 1999, Extent of Pleistocene Lakes in the 
Western Great Basin. Miscellaneous Field Studies Map 
MF-2323, U.S. Geological Survey, Denver, CO.

3. Matsubara, Y., and A. D. Howard, nd, Spatially-explicit 
modeling of modern and Pleistocene runoff and lake 
extent in the Great Basin region, western United States.
Department of Environmental Sciences, University of 
Virginia, Charlottesville, Virginia.

One of the stranger claims that has been made about Lake 
Bonneville and other pluvial lakes in the southwest is that 
the salt and other evaporite deposits that characterize the 
modern playa lakes associated with them are the result of 
the evaporation of sea water splashed into them from the 
Pacific Ocean by multiple-kilometer-high impact generated 
megatsunamis from a terminal Pleistocene /early Holocene 
impacts as argued by Tollmann and Tollmann (1994) and 
Knight and Lomas (2000). 

Now, as in either 1994 and 2000, there exists ample data, 
interpretations, and other information in published literature
to soundly refute their arguments. The change from fresh
water, pluvial lakes towards the modern saline playa lakes 
occurred long before their proposed impacts as documented 
in the above papers. The accumulation of evaporites in these 
lakes started thousands of years before the hypothetical 
impact. In addition, the geochemistry and sedimentology 
of the salt and other evaporites found in these lakes clearly 
demonstrates that they are the result of the evaporation of
water carrying dissolved minerals from rocks exposed 
within the drainage basin of these lakes as discussed by
Hart et al. (2004), Spencer et al.  (1985a, 1985b). Also, 
despite the continuous record of lake sedimentation 
recovered in cores from Lake Bonneville and other lakes,
there is a complete lack of either an event bed of deposits
that such an event would most certainly have left behind.  
The many problems with the arguments of Tollmann and 
Tollmann (1994), which Knight and Lomas (2000) simply
ignore, are discussed in detail by Deutsch et al. (1994).

References Cited,

Deutsch, A., C. Koeberl, J. D. Blum, B. M. French, B. P. Glass, 
R. Grieve, P. Horn, E. K. Jessberger, G. Kurat, W. U. Reimold,
J. Smit, D. Stöffler, and S. R. Taylor, 1994, The impact-flood 
connection: Does it exist? Terra Nova. vol. 6, pp. 644-650.

Christopher Knight and Robert Lomas. 2000 Uriel's Machine: 
‘The Ancient Origins of Science. Element Books Ltd. 480 pp.

Kristan-Tollmann, E. and A. Tollmann, 1994, The youngest 
big impact on Earth deduced from geological and 
historical evidence. Terra Nova. vol. 6, no. 2, pp. 209-217.

Hart, W. F., J. Quade, D. B. Madsen, D. S. Kaufman, and C. G. 
Oviatt, 2004, The 87Sr/86Sr ratios of lacustrine carbonates 
and lake-level history of the Bonneville paleolake system. 
Geological Society of America Bulletin. vol. 116, no. 9-10, 
pp. 1107-1119.

Spencer, R. J., H. P. Eugster, and B. F. Jones, 1985a, Geochemistry 
of great Salt Lake, Utah II: Pleistocene-Holocene evolution. 
Geochimica et Cosmochimica Acta.  vol. 49, no. 3, pp. 739-747

Spencer, R. J., H. P. Eugster, B. F. Jones, and S. L. Rettig, 1985b,
Geochemistry of Great Salt Lake, Utah I: Hydrochemistry 
since 1850. Geochimica et Cosmochimica Acta. vol. 49, 
no. 3, pp. 727-737

Best wishes,

Paul H.

No comments: