The Imaginary Mucks of Alaska and Siberia was "Arrowheads from NWA"
Paul bristolia at yahoo.com Mon Jun 11 11:32:43 EDT 2007
In the post "Arrowheads from NWA", Mr. Grondine wrote:
“The impact that produced the Alaskan and Siberian
mucks, and altered the north Pacific currents, and the
world's weather, are covered in my book "Man and
Impact in the Americas".”
One major problem is that the so-called "Alaskan and Siberian
mucks" exist only in the very vivid imagination of various
catastrophists, i.e. Deloria (1997), Hapgood (1970), and
Velikovsky (1955). Over the last sixty years, numerous papers
have shown that the descriptions of the so-called "Alaskan and
Siberian mucks" by Hibben (1942, 1946) and Rainey (1940) are
grossly incorrect and completely refuted the interpretations,
which they have made of their catastrophic origin.
A typical description of muck is:
"In Alaska, for example, thick frozen deposits of
volcanic ash, silts, sands, boulders, lenticles and
ribbons of unmelted ice, and countless relics of late
Pleistocene animals and plants lie jumbled together
in no discernible order. This amazing deposit,
usually referred to as 'muck', has been described
by Dr Rainey as containing: '... enormous numbers
of frozen bones of extinct animals, such as mammoth,
mastodon, super bison and horse, as well as brush,
stumps, moss and freshwater molluscs (281)'."
It has now been proved that such descriptions are nothing more
than imaginative fiction, which have been soundly refuted by
over 50 years of research and numerous peer-reviewed papers
and monographs, which have been published by the Quaternary
geologist, who have studied these deposits for decades.
As proved by numerous published peer-reviewed papers and
monographs, including Berger (2003), Bettis et al. (2003),
Guthrie (1990), McDowell and Edwards (2001), Muhs et al.
(2001, 2003, 2004), Pewe (1955, 1975a, 1975b, 1989), and
Westgate et al. (1990), the claim that these deposits consist
of "thick frozen deposits of volcanic ash, silts, sands, boulders,
lenticles and ribbons of unmelted ice, and countless relics of
late Pleistocene animals and plants lie jumbled together in no
discernible order" is false. Instead, as described in numerous
publications, specifically Guthrie (1990), Muhs et al. (2003),
Pewe (1955, 1975a, 1975b, 1989), and Westgate et al. (1990),
the deposits, which are often referred to as “Alaskan muck”
consist of a well-ordered, layer-cake sequence of stratigraphic
units containing distinct paleosols and buried forests with in
situ tree stumps. As seen in Figures 20 and 29 of Pewe (1975);
Figure 4 of Pewe et al. (1997); and the measured sections of
Westgate et al. (1990), the so-called “muck” consists of well-
defined geologic layers, which are only jumbled where the
surface has been disturbed by either thermokarst, landslides,
solifluction, or some combination of these processes. The total
thickness of the Quaternary deposits, which have been designated
as “muck” is only 10 to 20 m (33 to 66 ft) as their thickest,
which become thinner upslope.
Starting with Pewe (1955), Quaternary geologists have recognized
the presence of 7 well-defined stratigraphic units, which the
deposits that are falsely described as being “jumbled together
in no discernible order”. Some of these stratigraphic units, i.e.
the Ready Bullion Formation, Engineer Loess, Goldstream
Formation, Gold Hill Loess, and the Fairbanks Loess, consist
of silt, which have been demonstrated to consist of a combination
of wind-blown silt called "loess" and sediments moved down-hill
by slopewash and solifluction. Some stratigraphic units, i.e. the
Dawson Cut and Eva Formations, contain buried, in situ forests
that are rooted in "fossil" soils, which are called “paleosols”.
Other stratigraphic units , i.e. the Tanana Formation, Fox
Gravel, and Cripple Gravel, consist of gravels, which often
contain gold and demonstrated to have been deposited by
streams (Bettis et al. 2003; Pewe 1955, 1975a, 1975b, 1989;
Pewe et al. 1997; Westgate et al. 1990; Muhs et al. 2001,
2003, 2004).
In addition, the contacts between these stratigraphic units are
well-defined, persistent, and easily mappable. The forest beds,
ice-wedge casts, and buried soils, which are found associated
with the contacts demonstrate the periods of non-deposition
lasting thousands to tens of thousands years occurred between
the deposition different stratigraphic units. They soundly
refute the claim that the “Alaskan muck” accumulated during a
single catastrophic event. Even within individual stratigraphic
units, paleosols can be found indicating that the accumulation
of sediments comprising individual them was not continuous being
interrupted by periods of either non-deposition and landscape
stability or erosion (Bettis et al. 2003; Pewe 1955, 1975a,
1975b, 1989; Pewe et al. 1997; Westgate et al. 1990; Muhs et
al. 2001, 2003, 2004).
Rainey (1940) and Hibbens (1942, 1946) were wrong in their
claims that the remains plant and animal fossils occur randomly
together throughout the “Alaskan muck”. The fossils, rather
subfossils of trees are typically limited to one of three buried
forest beds, which have been mapped within the so-called
“Alaskan muck”. For example as shown in Figure 29 of Pewe
(1975a), buried forest containing in situ tree stumps at the
top of the Fox Gravel, the Gold Hill Loess, and the Goldstream
Loess. Each of these buried forests are characterized by the
in situ stumps of mature trees rooted in buried soils developed
in the top of each of these units (Pewe 1975a, 1975b, 1989;
Pewe et al. 1997). These buried forests consist of the stumps
and fallen trunks of forests buried in place by colluvial deposits
or solifluction lobes. Papers and monographs published in the
last fifty years have shown the claims and descriptions made
by Rainey (1940) and Hibben (1942, 1946) concerning the
abundance and distribution of fossil bones to be grossly
exaggerated and quite inaccurate.
Mr. Grondine continued:
" It is too bad these mucks are not absolutely dated
yet. But 11,000 BCE would be a late date for Bessey's
"arrowheads" (points) - most are likely far older."
The fact of the matter is that both the “Alaskan and Siberian
mucks” have been repeatedly dated by luminescence and optical
stimulated luminescence dating and dating of any volcanic ash
layers found in them. The younger “muck deposits” have been
dated by radiocarbon dating and the archaeological remains,
which they contain. These dates demonstrate that the sediments,
which are haphazardly and incorrectly lumped together as a single
“Alaskan muck”, episodically accumulated over a period of 2
to 3 million years, with the youngest deposits having accumulated
as recently as 7,000 to 8,000 years ago. The youngest forest bed,
the Eva Forest Bed, dates to the last interglacial, about 125,000
years ago as determined by Pewe et al. (1997). It and the “muck”
beneath it are far too old to be related to any terminal Pleistocene
catastrophe. The oldest forest bed, the Dawson Cut Forest Bed,
has been found to be almost 2 million years old by Westgate et
al. (2003). These dates, paleosols, and in situ forest beds,
indicate that the “Alaskan muck” did not accumulate as the
result of one event, but rather represents periods during which
loess and other sediments accumulated separated by very long
periods, thousands to tens of thousands of years, during which
there was a lack of any accumulation of “muck” (Berger 2003,
Muhs et al. (2001, 2003, 2004), Pewe (1955, 1975a, 1975b,
1989), Pewe et al. (1997), and Westgate et al. (1990).
In case of the “Siberian muck”, there are numerous published,
peer-reviewed papers and monographs, which also refute all of
what Deloria (1997), Hapgood (1970), Velikovsky (1955), and
others have written about it. What these papers and monographs
prove is that the so-called “Siberian muck”, like the “Alaskan
mucks” consist of multiple well-defined and recognizable
stratigraphic units that are **not ** “jumbled together in no
discernible order”. They demonstrate that many of these units
typically occur in an ordered and predictable layer caked fashion
and are both separated by and internally contain well defined
paleosols, which represent periods during, which the deposition
of the so-called “Siberian muck” ceased for periods of hundreds
to thousands and tens of thousands years and allowed the
formation of mature soils. The Siberian muck as described by
Deloria (1997), Hapgood (1970), and Velikovsky (1955),
exists only in the rather vivid imagination of these writers.
In addition these publications contain numerous luminescence,
optical stimulated luminescence, and radiocarbon dates along
with artifacts found within them, that date the age of the
various stratigraphic units comprising the “Siberian muck”. At
one location, these dates and paleosols show distinct periods
during which the “Siberian muck” accumulated between
18,000 to 28,000 BP, around 40,000 to 50,000 BP, and about
89,000 BP (Frechen and Yamskikh 1999). Rutter et al. (2003)
dated individual stratigraphic units within the “Siberian muck”,
which are separated by paleosols, as being as old as 88,000,
101,000 to 109,000, and 130,000 BP. These and many, many
other dates soundly and repeatedly refute any connection
between the deposition of the “Siberian muck” and any
terminal Pleistocene catastrophe.
(Note this is a revision of previous essay, which I have
written about the “Alaskan muck”.)
References:
Berger, Glenn W., 2003, Luminescence chronology of Late
Pleistocene loess-paleosol and tephra sequences near Fairbanks,
Alaska. Quaternary Research. vol. 60, no. 1, Pages 70-83.
Bettis, E. A., Muhs, D. R., Robert, H. M., and Wintle, A. G.,
2003, Last Glacial loess in the conterminous USA.
Quaternary Science Reviews. vol. 22, no. 18-19,
pp. 1907-1946
Deloria, Vine, Jr., 1997, Red Earth, White Lies: Native
Americans and the Myth of Scientific Fact. Fulcrum
Publishing. Golden, Colorado.
Frenchen, M., and Yamskikh, 1995, Upper Pleistocene loess
stratigraphy in the southern Yenisei Siberia area. Jounral
of the Geological Society of London. vol. 156, pp. 515-525.
Gutherie, R. D., 1990, Frozen Fauna of the Mammoth Steppes:
The Story of Blue Babe. University of Chicago Press, Chicago,
Illinois.
Hapgood, C. H., 1970, The Path of The Pole. Chilton Book
Company. New York, New York.
Hibben, Frank C., 1942, Evidences of early man in Alaska.
American Antiquity. vol. 8, pp. 254-259.
Hibben, Frank C., 1946. Lost Americans. Crowell. New York,
New York.
Muhs, D. R., Ager T. A., and Begét, J. E., 2001, Vegetation
and paleoclimate of the last interglacial period, central Alaska
Quaternary Science Reviews. vol. 20, no. 1-3, pp. 41-61.
Muhs, D. R., McGeehin, J. P, Beann, J., and Fisher, E., 2004,
Holocene loess deposition and soil formation as competing
processes, Matanuska Valley, southern Alaska. Quaternary
Research. vol. 61, no. 3, pp. 265-276
Muhs, D. R., Ager, T. A., and Begét, J., 2004, Stratigraphy and
palaeoclimatic significance of Late Quaternary loess–palaeosol
sequences of the Last Interglacial–Glacial cycle in central
Alaska. Quaternary Science Reviews. vol. 22, no. 18-19,
pp. 1947-1986.
McDowell, P. F., and Edwards, M. E., 2001, Evidence of
Quaternary climatic variations in a sequence of loess and
related deposits at Birch Creek, Alaska: implications for the
Stage 5 climatic chronology. Quaternary Science Reviews,
vol. 20, no.1-3, pp. 63-76.
Pewe, T. L., 1955, Origin of the upland silt near Fairbanks,
Alaska. Geological Society of America Bulletin. vol. 66,
no. 6, pp. 699-724.
Pewe, T. L., 1975a, Quaternary Geology of Alaska. U.S.
Geological Survey Professional Paper 835, 145 pp.
http://pubs.er.usgs.gov/usgspubs/pp/pp835Pewe, T. L., 1975b, Quaternary Stratigraphic Nomenclature in
Central Alaska. U.S. Geological Survey Professional Paper
no. 862, 32 pp.
http://pubs.er.usgs.gov/usgspubs/pp/pp862Pewe, T. L., 1989, Quaternary stratigraphy of the Fairbanks
area, Alaska. in Late Cenozoic History of the Interior Basins
of Alaska and the Yukon. U.S. Geological Survey Circular
no. 1026, pp. 72-77.
Pewe, T. L., Berger, G. W., Westgate, J. A., Brown, P. A., and
Leavitt, S. W., 1997, Eva Interglacial Forest Bed, Unglaciated
East-Central Alaska. Geological Society of America Special
Paper no. 319, 54 pp.
Rainey, F., 1940, Archaeological Investigations in Alaska.
American Antiquity. vol. 5, pp. 299-308.
Rutter, N. W., Rokosh, D., Evans, M. E., Little, E. C., Chlachula,
J., and Velichko, A., 2003, Correlation and interpretation of
paleosols and loess across European Russia and Asia over
the last interglacial-glacial cycle. Quaternary Research.
vol. 60, no. 1, Pages 101-109.
Velikovsky, Immanuel, 1955. Earth in Upheaval. Doubleday
and Company, Garden City, New York.
Westgate, J. A., Stemper, B. A., and Pewe, T. L., 1990, A 3
m.y. record of Pliocene-Pleistocene loess in interior Alaska.
Geology. vol. 18, no. 9, p. 858-861.
Westgate, John A., Preece, Shari J., and Pewe, Troy L., 2003,
The Dawson Cut Forest Bed in the Fairbanks area, Alaska, is
about two million years old. Quaternary Research. vol. 60,
no. 1, Pages 2-8.
Yours,
Paul